
.
t

A Generic Software Safety Document Generator

Ewen Denneyl and Ram Prasad Venkatesan*'2

QSS Group Inc, NASA Ames Research Center, Moffett Field, CA
edenney8email.arc.nasa.gov

* Department of Computer Science, University of Illinois at Urbana-Champaign, IL
rpvenkat8uiuc.edu

Abstract. Formal certification is based on the idea that a mathemat-
ical proof of some property of a piece of software can be regarded as a
certificate of correctness which, in principle, can be subjected to exter-
nal scrutiny. In practice, however, proofs themselves are unlikely to be of
much interest to engineers. Nevertheless, it is possible to use the infor-
mation obtained from a mathematical analysis of software to produce a
detailed textual justification of correctness. In this paper, we describe an
approach to generating textual explanations from automaticdy gener-
ated proofs of program safety, where the proofs are of compliance with an
explicit safety policy that can be varied. Key to this is tracing proof obli-
gations back to the program, and we describe a tool which implements
this to certify code auto-generated by AutoBayes and AutoFilter, pro-
gram synthesis systems under development at the NASA Ames Research
Center. Our approach is a step towards combining formal certification
with traditional certification methods.

1 Introduction

Formal methods are becoming potentially more applicable due, in large part,
to improvements in automation: in particular, in automated theorem proving.
However, this increasing use of theorem provers in both software and hardware
verification also presents a problem for the applicability of formal methods: how
can such specialized tools be combined with traditional process-oriented devel-
opment methods?

The aim of formal certification is to prove that a piece of software is free
of certain defects. Yet certification traditionally requires documentary evidence
that the software development complies with some process (e.g., DO-178B). Al-
though theorem provers typically generate a large amount of material in the form
of formal mathematical proofs, this cannot be easily understood by people inex-
perienced with the specialized formalism of the tool being used. Consequently,
the massive amounts of material that experts can create with these theorem
provers fairly inaccessible. If you trust a theorem prover, then a proof of cor-
rectness tells that a program is safe, but this is not much help if you want to
understand why.

Ram Prasad Venkatesan carried out this work during a QSS summer internship at
the NASA Ames Research Center.

One approach is to verbalize high-level proofs produced by a theorem prover.
Most of the previous work in this direction has focused on translating low-level
formal languages based on natural deduction style formal proofs. A few theorem
provers, like Nuprl [CAB+86] and Coq [BBC+97], can display formal proofs in
a natural language format, although even these readable texts can be difficult
to understand. However, the basic problem is that such proofs of correctness
are essentially stand-alone artifacts with no clear relation to the program being
verified.

In this paper, we describe a framework for generating comprehensive expla-
nations for why a program is safe. Safety is defined in terms of compliance with
an explicitly given safety policy. Our framework is generic in the sense that we
can instantiate the system with a range of different safety policies, and can easily
add new policies to the system.

The safety explanations are generated from the proof obligations produced
by a verification condition generator (VCG). The verification condition gener-
ator takes as input a synthesized program with logical annotations and pro-
duces a series of verification conditions. These conditions are preprocessed by a
rewrite-based simplifier and are then proved by an automated theorem prover.
Unfortunately, any attempt to directly verbalize the proof steps of the theorem
prover would be ineffective as

- the process of simplifying the proof objects makes it difficult to provide a

- it is difficult to relate the simplified proof obligations to the corresponding
faithful reproduction of the entire proof;

parts of the program.

We claim that it is unnecessary to display actual proof steps - the proof
obligations alone provide sufficient insight into the safety of a program. Hence
we adopt an approach that generates explanations directly from the verification
conditions. Our goals in this paper are:

- using natural language as a basis for safety reports;
- describing a framework in which proofs of safety explicitly refer back to

- providing an approach to merge automated certification with traditional
program components;

certification procedures.

Related Work Most of the previous work on proof documentation has focused
on translating low-level formal proofs, in particular those given in natural de-
duction style. In [CKT95], the authors present an approach that uses a proof
assistant to construct proof objects and then generate explanations in pseudo-
natural language from these proof objects. However, this approach is based on
a low-level proof even when a corresponding high-level proof was available. The
Proverb system [Hua94] renders machine-found natural deduction proofs in nat-
ural language using a reconstructive approach. It first defines an intermediate
representation called assert ion level inference rules, then abstracts the machine-
found natural deduction proofs using these rules; these abstracted proofs are

then verbalized into natural language. Such an approach allows atomic justifica-
tions at a higher level of abstraction. In [HMBC99], the authors propose a new
approach to text generation from formal proofs exploiting the high-level inter-
active features of a tactic-style theorem prover. It is argued that tactic steps
correspond approximately to human inference steps. None of these techniques,
though, is directly concerned with program verification. Recently, there has also
been research on providing formal traceability between specifications and gener-
ated code. [BRLP98] presents a tool that indicates how statements in synthesized
code relate to the initial problem specification and domain theory. In [WBS+Ol],

, the authors build on this to present a documentation generator and XMLbased
browser interface that generates an explanation for every executable statement
in the synthesized program. It takes augmented proof structures and abstracts
them to provide explanations of how the program has been synthesized from a
specification.

One tool which does combine verification and documentation is the PolySpace
static analysis tool [Pol]. PolySpace analyzes programs for compliance with fixed
notions of safety, and produces a marked-up browsable program together with a
safety report as an Excel spreadsheet.

2 Certification Architecture

The certification tool is built on top of two program synthesis systems. Auto-
Bayes [FSO3] and AutoFdter [WSO3] are able to auto-generate executable code
in the domains of data analysis and state estimation, respectively. Both systems
are able to generate substantial complex programs which would be ClifEcult and
time-consuming to develop manually. Since these programs can be used in safety-
critical ekironments, we need to have some guarantee of correctness. However,
due to the complex and dynamic nature of the synthesis tools, we have departed
from the traditional idea of program synthesis as being “correct by construction”
or process-oriented certification, and instead adopt a product-oriented approach.
In other words, we certify the individual programs which are generated by the
system, rather than the system itself.

Figure 1 gives an overview of the components of the system. The synthesis
system takes as input a high-level specification together with a safety policy. Low-
level code is then synthesized to implement the specification. The synthesizer
&st generates “intermediate” code which can then be translated to different
platforms. A number of target language backends are currently supported. The
safety‘policy is used to annotate the intermediate code with mark-up information
relevant to the policy. These annotations give “local” information, which must
then be propagated throughout the code. Next, the annotated code is processed
by a Verification Condition Generator (VCG), which applies the rules of the
safety policy to the annotated code in order to generate safety conditions (which
express whether the code is safe or not). The VCG has been designed to be
“correct-by-inspection”, that is, sufkiently simple that it is relatively easy to be
assured that it correctly implements the rules of the safety logic. In particular,

Spification

Synchesis
Engine

Optimizer

Intermediate Code

ode Generator

I
Source Code ?-

Simplifier

.............

Safety
.~ Document

: Generator '

..............

Safety
* Document

Proof Chaker

Certificate

Fig. 1. Certification Architecture

the VCG does not carry out any optimizations, not even reducing substitution
terms. Consequently, the verification conditions (VCs) tend to be large and must
be preprocessed before being sent to a theorem prover. The preprocessing is done
by a traceable rewrite system'. The more manageable SVCs are then sent to a
first-order theorem prover, and the resulting proof is sent to a proof checker. In
the above diagram, the safety documentation extension is indicated using dotted
lines.

3 Safety Policies

Formal reasoning techniques can be used to show that programs satisfy certain
safety policies, for example, memory safety (i.e. they do not access out of bound
memory locations), and initialization safety (i.e. uninitialized variables are not
used). Formally, a safety policy is a set of proof rules and auxiliary definitions
which are designed to show that programs satisfy a safety property of interest.
The intention is that a safety policy enforces a particular safety property, which

- . ,

is an operational characterization that a program does not go wrong. The dis-
tinction between safety properties and policies is explored in detail in [DF03].
We summarize the important points here.

Axiomatic semantics for (simple) programming languages are traditionally
given using Hoare logic [Mit96], where P {C} Q means that if precondition,
P, holds before the execution of command, C, then postcondition, Q, holds
afterwards. This can be read backwards to compupe the weakest precondition
which must hold to satisfy a given postcondition.

We have extended the standard Hoare framework with the notion of safety
properties. [DF03] outlines criteria when a (semantic) safety property can be
encoded as an executable safety policy.

Hoare logic treats commands as transformations of the execution environ-
ment. The key step in formalizing safety policies is to extend this with a “shadow”,
or safety environment. Each variable (both scalar and vector) has a correspond-
ing shadow variable which records the appropriate safety information for that
variable. For example, for initialization safety, the shadow variable x,,,, is set to
init or uninit depending on whether x has been initialized or not. In general,
there is no connection between the values of a variable and its shadow variables.
The semantic definition of a safety property can then be factored into two fami-
lies of fomulas, Safe: and Sub:(-). A feature of our framework is that the safety
of a command can only be expressed in terms of its immediate subexpressions.
The subscripts give the class of command (assignment, for-loop, etc.), and the
superscript lists the immediate subexpressions.

For a given safety policy, for each command, C, of class cl with immediate
subexpressions, el . . ~ e,, Safet;”‘““ expresses the safety conditions on C, in terms
of program variables and shadow variables; (P) is a substitution applied
to formula P expressing the change C makes to the shadow environment.

For example, for the initialization safety policy, the assignment x := y has
safety condition, Safe;!&, which is the formula yinlt = anit (Le., “y must be
initialized”) and, for formula P, Subf;Ei,(P) is the substitution P [i n i t / x] (i.e.,
“x becomes initialized”).

Hence, in our framework, uerifiing the safety of a program amounts to work-
ing backwards through the code, applying safety substitutions to compute the
safety environment, and accumulating safety obligations while proving that the
safety environment at each point implies the corresponding safety obligations.
Explaining the safety of a program amounts to giving a textual account of why
these implications hold, in terms relating to the safety conditions and safety
substitutions.

Our goal, then, is to augment the certiiication system such that the proof
obligations have sufficient information that we can give them a comprehensible
textual rendering. We do this by extending the intermediate code to accommo-
date labels and the VCG to generate verification conditions with labels. We add
labels for each declaration, assignment, loop construct and conditional statement
by giving them a number in increasing order starting &om zero. For loops and
conditions, we also add the command type to the label. For example, f o r loops

are given a label f or(Zabel). Similarly, we also have labels i f (label) and wh(hbel).
Figure 2 gives the Hoare rules extended by labels which are implemented by the
VCG.

(decl)

(adecl)

(assign)

(update)

W l , S u b L (Q) A S a f e L)

lab(E,Sub~,&(Q) A Safe:;,",) { (v = ~ C d) ' } Q

1ab(l,Sub:;,ei,(Q) A {(x := e) '} Q

lab(l,Sub:;:&':*(Q) A Safe:$'t'.e') ((xCe11 := ez)'} Q

XI'} Q

b A P {ci} Q {CZ} Q
lab(i f (l) ,Sube(P) A SafeeQ) {(if bthencl e lsecz) '} Q (if)

P { c } I I&b*P I&-b+Q
lab(wh(l), inv(I), Subthilhila(I) A Safe!&.) { (uhi lebinvIdo c)'} Q (while)

Fig. 2. Extended Hoare Rules

We have initially restricted ourselves to safety of array accesses (ensuring
that the access is within the array bounds) and safety of variables with respect
to initialization. However, we intend to extend our tool to support safety with
respect to memory reads and writes, unit safety and data flow safety. This would
be easily incorporated given the generic nature of our framework.

4 Documentation Architecture

In this section, we introduce the general architecture of the safety document
generator and discuss the notions of def-use analysis and template composition.

4.1 Document Generator

Figure 3 shows the structure of the document generation subsystem. The syn-
thesized intermediate code is labeled by adding line numbers to the code before
it is sent to the VCG. The VCG then produces verification conditions for the
corresponding safety policy. These verification conditions preserve the labels by
encapsulating them along with the weakest safety preconditions.

The document generator takes as input the verification conditions gener-
ated in this manner and first extracts the needed information (more details are
given in Section 5). It next identifies each part of the program that requires
explanation and selects appropriate explanation templates from a repository of
safety-dependent templates.

Fig. 3. Document Generation Architecture

Because of the way our safety logic is defined in terms of immediate subex-
pressions of commands, we define afragrnent to be a command "sliced" to its
immediate subexpressions. For atomic commands, this is equivalent to the com-
mand itself- For compound commands, we will represent this as i f b and while b.
These are the parts of a program that require an independent safety explanation.
Text is then generated by instantiating the templates with program fragments.

4.2 Def-Use Analysis

Since commands can affect the safety of other commands in their effect on the
program environment we cannot consider the safety of commands in isolation.
In particular, the safety of a command involving a variable x depends on the
safety of all previous commands in the program that contain an occurrence of
x. Consider the following code:

(Ll) x = 2

(L2) y = x

Now consider the safety of the expression acyl = 0 with respect to array
bounds. To determine whether this access is safe, we need to ensure that the
value held by y is within the array bounds. Now supposing that a is an array of
size 10, we need to reason that y is defined from x which in turn is initialized to
2, which is less than 10. Hence we can state that the access is safe. Similarly, if we
were analyzing the safety of the same expression with respect to initialization, we
would need to convince ourselves simply that y is initialized. Reasoning from y =
x alone would be insufficient and incorrect because x could be uninitialized. So we
need to convince ourselves that x is also initialized by considering the expression
x = 2. In other words, the safety of the expression acyl = 0 depends on the
safety of the fragments y=x and x=2.

To summarize, we trace each variable in a program fragment 4 to its origin
(the point where it was first defined or initialized) and reason about the safety of
all the fragments encountered in the path up to the origin to obtain a thorough
explanation of the safety of 4. For a given program fragment Q, having variables
w , we use O(Q,) to represent the set of all fragments, with their labels, that were
encountered while tracking each variable in w to its origin. We also include 4 in
O(4). Strictly speaking, the argument to R should be a distinguished occurrence
of a fragment within a program, but we will gloss over this.

4.3 Contexts

In addition to tracking variables to their origin, we also need to find which
fragments the fragment under consideration depends on. For example, the safety
of an assignment statement appearing within a conditional block also depends
on the safety of the conditional expression. Similarly, the safety of statements
inside while loops depends on the safety of the loop condition. In the case of
nested loops and conditional statements, a fragment's safety depends on multiple
fragments. To provide complete safety explanations for a program fragment 4,
we construct a set !Psp(Q,) as follows. As above, 4 is assumed to be distinguished
within a given program. We first identify all the fragments Q,' on which Q, depends.
That is, if 4 lies within conditional blocks and/or loop blocks, then we include
the fragments representing those conditional expressions and/or loop expressions
in 4'. We will refer to this as the context of the fragment, Q,, and denote it by
cxt(4). Since we add special labels to loops and conditional statements, we can
easily identify blocks. Hence even if a fragment 4 is buried deep within conditions
and nested loops, we can determine the set qS with ease. Then, we trace each
component and variable in the fragment 4 and the set of fragments Q,' to their
origin (as explained in the previous section); that is,

P s * (4) = u{.n(Q,'> I 4' E cxt(Q,)).

Intuitively, we can view !Psp(+) as the set of all expressions and program
fragments that we need to consider while reasoning about the safety of 4 with
respect to the safety policy sp . Each element in this set is represented as a (label,
fragment) pair.

We now state (without proof) that 4 is safe if each of the fragments in !Psp(g5)
is safe. That is,

Here, we use the predicate safe to indicate that a set of program fragments are
safe with respect to a policy sp.

(1) x = 5 ;
(2) z = 10
(3) i f (x > z)
(4) y = x ;

else
(5) y = z ;

safesp (@SP (4)) =+ safesp (#).

For example, consider the following piece of code in C :

Here, the safety of the assignment y = x at line 4 with respect to initialization
of variables depends not only on the assignment statement y = x but also on the
the conditional fragment i f (x > z) so, in this case, for the program fragment
y = x, the context would be simply {if (x > z)}. We can further deduce that
the safety of the conditional statement in turn depends on the two assignment
statements x = 5 and z = 10. So, to explain the safety of the expression y =
x at line 4, we need to reason about the safety of the fragments if (x > z) ,
z = 10 and x = 5 at lines 3, 2 and 1 respectively. Hence, !Psp(y = x) is the set
((4,Y = 4 7 (3, i f (x > z>), (272 = lo) , (1, (x = 5))) .

4.4 Templates

We have defined a library of templates which are explanation fragments for the
Werent safety policies. These templates are simply strings with holes which can
be instantiated by program components to form safety explanations. A program
component can be a simple program variable, a program fragment , an expression
or a label.

Template Composition and Instantiation: The composition of an explanation
for a given program fragment is obtained from the templates defined for a given
policy, sp. For each fragment, 4, we first construct the set !Psp(4). Then, for
each element + in !Psp(q5), we find the required template(s), Temp,($). Next we
insert the appropriate program components in the gaps present in the template
to form the textual safety explanation. This process is repeated recursively for
each fragment in !PSp(4) and then all the explanations obtained in this way are
concatenated to form the final safety explanation. It should be noted that the
safety explanations generated for most of these fragments are phrases rather
than complete sentences. These phrases are then combined in such a manner
that the find safety explanations reflects the data flow of the program.

(1) var aClOl ;
(2) x = 0 ;
(3) aCxl = 0 ;

As an example, consider the following code fragment:

Here, a is declared to be an array of size 10 at line 1. x is initialized to 0 at line
2 and a[x] is initialized to 0 at line 3.

Considering the safety of the expression a[xl = 0 (4), the set !Psp(4) is { (3,
(a[xl = 0)) , (2 , (x = 0))) . Now, for each of these program fragments, we
apply the appropriate templates for array bounds and generate explanations by
combining them with the program variables a and x along with their labels. In
this case, the safety explanation is:

The access a[x] at l ine 3 is safe as t h e t e r m x i s evaluated f r o m x = 0 at
line 2; x is within 0 and 9; and hence the access is within the bounds of the array
declared a t h e 1.

Now if we were interested in initialization of variables, the set !Pssp(4) is still
((3 , (a[x] = O)), (2, (x = 0))) . However, the template definitions for the
same fragments differ and the explanation is:

The assignment a[x] = 0 at line 3 is safe; the t e r m x is initialized f r o m x=O
at line 2.

5 Implement at ion and Illustration

We now describe an implementation of the safety document generator based on
the principles discussed in the previous sections and give an example of how it
works for different safety policies.

5.1 Implementation

The process of generating the explanations from the intermediate language can
be broadly classified into two phases.

- Labeling the intermediate code and generating verification conditions.
- Scanning the verification conditions and generating explanations.

We scan the verification conditions to identify the different parts of the pro-
gram that require safety explanations collecting as much information as possible
about the different data and variables along the way, and computing the !PssP(4).
Fragments that require safety explanations differ for different safety policies.
Since we analyze the verification conditions and not the program, the safety
policy has already determined this. For example, in safety with respect to array
bounds, the fragments that require explanations would be the array accesses in
the program. On the other hand, we need to consider all variable assignments, ar-
ray accesses and assignments, declarations, and conditional sentences for safety
with respect to initialization of variables. That is, we consider all fragments
where a variable is used and determine whether the variable has been initial-
ized. In addition, we also accumulate information about the program variables,
constants and the blocks.

Finally, using the information that we have accumulated during the scanning
phase, we generate explanations for why the program is safe. As we have already
mentioned, our tool is designed to be generic. Irrespective of the safety policy

that we are currently concerned with, the tool analyzes each fragment that re-
quires an explanation, and generates explanations using templates as discussed
in the previous section. It should be noted that such an approach makes ex-
tension very easy as the introduction of a new safety policy would only involve
providing definitions in the domain of the safety property for each template.

5.2 A Simple Example

We give an example, here, of some intermediate code and the corresponding
explanations provided by the document generator.

0 proc(eg)

1 a[lol : i n t
2 b : i n t ;
3 c : i n t ;
4 d : i n t ;

5 b = l ;
6 c = 2 ;
7 d = b*b + c*c ;

8 for(i=O; i d 0 ; i++)

9 i f (i < 5)
10 a[d+i] = d ;

11 aC2*d-l-i1 = d ;

<

else

3
3

The explanations generated for safety with respect to array bounds and ini-
tialization are given in Figures 4 and 5, respectively. . .

6 Design Issues

In this section, we present some issues that were analyzed during the design and
implementation of the safety document generator and then describe features that
we have implemented for flexibility.

6.1 Invariants

To enable the document generator ,to recognize those parts of the vedlcation
conditions which come from loop invariants, we need to specifically label them
with labels of the form inv(1). Then, while generating explanations for fragments
within loops, we fkst find if the loop has an explicit invariant. If it does, we check

Safety Explanations for Array Bounds
The access a[d+i] at line 10 (if the condition at line 9 i s true) is safe as the term d
is evaluated f rom d=b*b+c*c at line 7; the term b is evaluated f rom b=l at line 5; the
term c is evaluated f rom c=2 at line 6; f o r each value of the loop index i f rom 0 to 9
at line 8; d+i is within 0 and 9; and hence the access is within the bounds of the array
declared at line 1.
The access aC2*d-l-i] at line 11 (i f the condition a t line 9 is false) is safe as the term
d is evaluated f rom d=b*b+c*c at line 7; the term b is evaluated f rom b=l at line 5; the
term c is evaluated f r o m c=2 at line 6; f o r each value of the loop index i f rom 0 to 9
at line 8; 2*d-l-i is within 0 and 9; and hence the access is within the bounds of the
array declared at line 1.

Fig. 4. Auto-generated Explanation: array safety policy

Safety Explanations for Initialization of Variables
The assignment b=l at line 5 is safe.
The assignment c=2 at line 6 is safe.
The assignment d=b*b+c*c at line 7 is safe; the t e rm b is initialized f rom b=l at line
5; the term c is initialized f rom c=2 at line 6.
The loop index i ranges f rom 0 to 9 and is initialized at line 8 .
The conditional expression ic5 appears at line 9; the loop index i ranges f rom 0 to 9
and i s initialized at line 8.
The assignment a[d+i]=d at line 10 is safe (if the condition at line 9 is true) ; the
term d is initialized f rom d=b*b+c*c at line 7; the term b is initialized f rom b=l at line
5; the term c is initialized f rom c=2 at line 6; the loop index i ranges f rom 0 to 9 and
is initialized at line 8.
The assignment a[2*d-l-i]=d at line 11 is safe (if the condition at h e 9 as false) ;
the term d is initialized f rom d=b*b+c*c at line 7; the t e rm b is initialized f r o m b=l at
line 5; the term c is initialized f rom c=2 at line 6; the loop index i ranges f rom 0 t o 9
and is initialized at line 8 .

Fig. 5. Auto-generated Explanation: init safety policy

if the fragment shares any variables with the invariant. The idea behind this is
that it is always possible that the loop invariant might be completely unrelated to
the safety of a fragment within that loop. In such a case, our explanations should
not consider the loop invariant. However, if the invariant does (presumably)
affect the safety of a fragment, we incorporate it into the explanation using the
label giving the line at which the invariant was defined.

6.2 Two-phase approach

We use a two-phase approach where the first phase involves scanning the pro-
gram and accumulating information while explanations are generated in the
second phase. It could be argued that explanations could be generated on the
fly, while scanning, rather than in two phases. The reason behind having a sepa-
rate scanning phase from the document generation phase is to support multiple
queries regarding the safety of a program. The user might want to determine the

safety of specific lines in the progrgn and might want to do it more than once. In
such a scenario, a tool would have to scan the code and accumulate information
each and every time. On the other hand, our current approach ensures that the
program is scanned only once even in case of multiple and/or repetitive queries.

6.3 Program Slicing

The document generator described so far analyzes each program fragment with
a view of providing complete and comprehensive safety explanations. This tech-
nique combined with the def-use analysis tends to make the reports long. More-
over, users might be interested in specific parts of the program rather than the
entire program. To accommodate this, we adopt the idea of a program slice. A
program slice comprises those parts of the program that actually determine the
state of a given variable at a particular point in execution. We give users the
option of checking a slice of the program rather than the entire program. Users
interested in a particular block can specify just the lines numbers within that
block. It is also possible that users could be interested in a few specific variables.
In such a case, they can just mention the variables involved. In both these cases,
the document generator provides safety explanations only for those fragments
that fall within the area of interest. However, the safety of these fragments could
depend on the safety of other fragments so we still need to track each program
term to its origin while generating appropriate explanations along the way.

6.4 Ranking

We have designed the document generator to be comprehensive. For some of
the more complex programs synthesized by AutoBayes, the safety document can
run to over a hundred pages. Although slicing can be used to focus attention on
areas of interest, it is still nice to get an overall justification of why a program
is safe.

Clearly, some facts are more important than others. We have implemented
a simple heuristic which ranks the fragments and displays them based on user
request. For instance, initialization of variables to constants can be viewed as a
trivial command so the corresponding explanation can be eliminated. We have
categorized fragments (in order of increasing priority) in terms of assignments
to numeric constants, loop mriable initializations, variable initializations, array
accesses and - the highest privrity - any command involving invariants.

The rationale behind giving explanations involving invariants the highest
priority is that invariants are generally used to fdl in the trickiest parts of a
proof, so are most likely to be of interest.

7 Conclusions and Future Work

The documentation generation system which we have described here builds on
our state-of-the-art program synthesis system, and offers a novel combination

of synthesis, verification and documentation. We believe that documentation
capabilities such as this are essential for formal techniques to gain acceptance.

Our plan is to combine the safety documentation with ongoing work on design
docurnentation. We currently have a system which is able to document the syn-
thesized code (explaining the specification, design choices made during synthesis,
and so on), either as in-line comments in the code or as a browsable document,
but it remains to integrate this with the safety document generator. We intend
to let the user chose between various standard formats for the documentation
(such as those mandated by DO-178B or internal NASA requirements).

A big problem for NASA is the recertification of modified code. In fact,
this can be a limiting factor in whether a code change is feasible or not. For
synthesis, the problem is that there is currently no easy way to combine manual
modifications to synthesized code with later runs of the synthesis system. We
would like to be able to generate documentation which is specific to the changes .
which have been made.

Finally, we intend to extend our certification system with new policies (in-
cluding resource usage, and constraints on the implementation environment).
The two safety policies which we have illustrated this with here are language-
specific in the sense that the notion of safety is at the level of individual com-
mands in the language. We have also looked at domain-specific policies (such
as for various matrix properties) where the reasoning takes place at the level of
code blocks. This will entail an interesting extension to the document generator,
making use of domain-specific concepts.

References

[BBC+97]

[BRLP98]

[CABf86]

[CKT95]

[DF03]

Bruno Barras, Samuel Boutin, Cristina Comes, Judicael Courant, Jean-
Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Ce-
sar Munoz, Chetan Murthy, Catherine Parent, Christine Paulin-Mohring,
Amokrane Saibi, and Benjamin Werner. The Coq proof assistant reference
manual: Version 6.1. Technical Report RT-0203, 1997.
Jeffrey Van Baalen, Peter Robinson, Michael Lowry, and Thomas Press-
burger. Explaining synthesized software. In D. F. Redmiles and B. Nu-
seibeh, editors, Proc 13th IEEE Conference on Automated Software Engi-
neerzng, pages 240-248, 1998.
Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland,
J. F. Cremer, R. W. Harper, Douglas J. Howe, T. €3. Knoblock, N. P.
Mendler, P. Panangaden, James T. Sasaki, and Scott F. Smith. Implement-
ing Mathematics with the Nuprl Development System. Prentice-Hall, NJ,
1986.
Y. Coscoy, G. Kahn, and L. ThBry. Extracting text from proofs. In
M. Dezani-Ciancaglini and G. Plotkin, editors, Proc. Second International
Conference on Typed Lambda Calculi and Applications, Edinburgh, Scot-
land, volume 902, pages 109-123, 1995.
Ewen Denney and Bernd Fischer. Correctness of source-level safety policies.
In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, Proceedings
FM 2003: Formal Methods, volume 2805 of Lect. Notes Comp. Sci., pages
894-913, Pisa, Italy, September 2003. Springer.

. .

[DKT93]

[FS03]

Arie Van Deursen, Paul Klint, and Frank Tip. Origin tracking. Journal of
Symbolic Computation, 15(5/6):523-545, 1993.
Bernd Fischer and Johann Schumann. AutoBayes: A system for generating
data analysis programs from statistical models. J . Functional Programming,
13(3):483-508, May 2003.

[HMBC99] Amanda M. Holland-Minkley, Regina Barzilay, and Robert L. Constable.
Verbalization of high-level formal proofs. In AAAI/IAAI, pages 277-284,
1999.
Xiaorong Huang. Proverb: A system explaining machine-found proofs. In
Ashwin Ram and Kurt Eiselt, editors, Proc. 16th Annual Conference of the
Cognitive Science Society, Atlanta, USA, pages 427-432. Lawrence Erlbaum
Associates, 1994.

[Mit96] John C. Mitchell. Foundations for Programming Languages. The MIT
Press, 1996.

[Poll PolySpace Technologies. http: //wa .polyspace. corn.
[WBS+Ol] Jon Whittle, JefFrey Van Baalen, Johann Schumann, Peter Robinson,

Thomas Pressburger, John Penix, Phil Oh, Mike Lowry, and Guillaume
Brat. Amphion/NAV: Deductive synthesis of state estimation software. In
Proc IEEE Conference on Automated Software Engineering, 2001.

WSOS] Jon Whittle and Johann Schumann. Automating the implementation of
Kalman filter algorithms, 2003. In review.

[Hua94]

